
P10. A flying of an aircraft can be simply explained through 4 forces: lift, weight, thrust, and drag. Lift is a force pushing an aircraft up against its weight.

Write a program to estimate a power to fly a plane at cruising speed: ask a user to input (1) drag coefficient C_D , (2) lift coefficient C_L , (3) air density ρ , (4) plane cross-section area A, (5) wing area S, and (6) plane weight m then calculate speed v to sustain the flight altitude and power required to fly in such a condition and report the power in both watt and horse power. Note: (1) power = thrust * v; (2) $thrust \approx drag$ (at constant speed); (3) $drag = C_D$ (0.5 ρv^2) A; (4) at constant flight altitude lift = weight; (5) weight = m g and $g = 9.8 \ m/s^2$; and (6) $lift = C_L$ (0.5 ρv^2) S.

Hint: (1) find v from lift = weight: $C_L(0.5 \rho \sqrt{2}) S = m g$;

- (2) find drag: $drag = C_D (0.5 \rho v^2) A$;
- (3) find thrust: thrush = drag;
- (4) find power: power = thrust * v.

1 watt is approx. 0.00136 horse power.

Example

CD: 0.6

CL: 1.2

air density: 0.41

cross-section area: 3.3

wing area: 14.9

plane weight: 520

power = 21,041.71 W. = 28.62 hp.

Use P10_template.py. (The template is only to allow smooth autograding.)