PS. Write a program to compute Root-Mean-Squared (RMS) value,

$$
r m s=\sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} x_{i}^{2}}
$$

That is to ask a user for (1) a number of values to compute $N,(2)$ get every value and compute the RMS, and (3) report it.

Hint: it is similar to average, but average of squared:

Average	v.s.	RMS
average $=$ summation $/ N$	v.s.	rms $=\operatorname{sqrt}($ sum_squared $/ N)$
summation $=x_{1}+\ldots+x_{N}$	v.s.	sum_squared $=x_{1}{ }^{2}+\ldots x_{N}{ }^{2}$.

Hence, each loop: sum $+=x \quad$ v.s. each loop: $s s+=x^{\star *} 2$

Use the PS template. (PS_template.py. The template is only to ensure the exact display format and allows smooth auto-grading.)

Example 1:
\qquad
Number of values:4
value:-10
value: 2
value:0.4
value:3.8
RMS $=5.45$

Here is P5_template.py

