PS. Write a program to compute Root-Mean-Squared (RMS) value,

$$rms = \sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} x_i^2}.$$

That is to ask a user for (1) a number of values to compute N, (2) get every value and compute the RMS, and (3) report it.

Hint: it is similar to average, but average of squared:

Average	V.S.	RMS
average = summation/N	V.S.	rms = sqrt(sum_squared/N)
summation = $x_1 + \dots + x_N$	V.S.	$sum_squared = x_1^2 + x_N^2$.

Hence,

each loop: sum += x v.s. each loop: ss += x**2

Use the PS template. (PS_template.py. The template is only to ensure the exact display format and allows smooth auto-grading.)

Example 1:

```
Number of values:4
value:-10
value:2
value:0.4
value:3.8
RMS = 5.45
```

Here is P5_template.py

```
Write a program to compute Root-Mean-Squared (RMS) value,
rms(x1, x2, x3, ..., xN) = sqrt( (x1<sup>2</sup> + x2<sup>2</sup> + x3<sup>2</sup> + ... xN<sup>2</sup>)/N ):
ask a user for (1) a number of values to compute N,
(2) get every value and compute the RMS, and (3) report it.
"""
# Write your code here!
rms = 0
# Do not edit below this line.
print('RMS = {:,.2f}'.format(rms))
```