P1. Given Taylor series, a value of sine function can be approximated from

- ~ vM-1 (D"
sin(x) = Y-, m-xz’”l,

where M is a number of terms. The larger M is, the more accurate the approximate is. For

example,

) x3 x5 x7  x°
M—5,sm(x)—x—3!+5!—?!+9!.

x3 I'5 x? xg I'll

M =6, sin(x) = x — Tttt

Write a program to approximate a sine value: ask a user for x for an angle in radian and M

for a number of terms, compute a value of sin(x) for M terms, and report the computation.

Use the P11 template. (Pﬂ_template.pg. The template is only to ensure the exact displag

format and allows smooth auto—grading.)



Example:

sin(0.70) = 0.64283

w0n
|_|
>
~
(W)
N
Y
~
]

0.64423

sin(0.70) = 0.64422

sin(0.70) = 0.64422



Here is P11_template.py

nmun

Given Taylor series, a value of sine function can be approximated from
sin(x) \approx sum_{n=0}"{M-1} (-1)"n)/((2n+1)!) x"(2n+1),

where M is a number of terms. The larger M is,

the more accurate the approximate is. For example,

M =75, sin(x) =x-x"3/3!1+x"5/5!1-x"7/71+x"9/9!.

M =6, sin(x)=x-x"3/31+x"5/51-x"7/71+x"9/91+x"11/11!.

Write a function, named approx_sin(x, tol),

to take 2 argument: x for an angle in radian and tol for tolerance.

The function computer approximate value of sin(x) for M terms such that
the last term in the series is smaller than the tolerance.

nun

fact(n):

f=1
i range(1,n+1):
f %=1

.F

approx_sin(x, M):
sinv = 0

__name__ == "_main__

x = float(input('x:"'))
int(input('M:"))

print('sin(%.2f) = %.5f'%(x, approx_sin(x, M)))




