
 P11. Given Taylor series, a value of sine function can be approximated from

where M is a number of terms. The larger M is, the more accurate the approximate is. For
example,

Write a program to approximate a sine value: ask a user for x for an angle in radian and M
for a number of terms, compute a value of sin(x) for M terms, and report the computation.

Use the P11 template. (P11_template.py. The template is only to ensure the exact display
format and allows smooth auto-grading.)

Example:

==

x:0.7

M:2

sin(0.70) = 0.64283

==

x:0.7

M:3

sin(0.70) = 0.64423

==

x:0.7

M:4

sin(0.70) = 0.64422

==

x:0.7

M:5

sin(0.70) = 0.64422

==

Here is P11_template.py
"""
Given Taylor series, a value of sine function can be approximated from
sin(x) \approx sum_{n=0}^{M-1} (-1)^n)/((2n+1)!) x^(2n+1),
where M is a number of terms. The larger M is,
the more accurate the approximate is. For example,
M = 5, sin(x) ≃x-x^3/3!+x^5/5!-x^7/7!+x^9/9!.
M =6, sin(x)≃x-x^3/3!+x^5/5!-x^7/7!+x^9/9!+x^11/11!.
Write a function, named approx_sin(x, tol),
to take 2 argument: x for an angle in radian and tol for tolerance.
The function computer approximate value of sin(x) for M terms such that
the last term in the series is smaller than the tolerance.
"""

def fact(n):
 f = 1
 for i in range(1,n+1):
 f *= i

 return f

def approx_sin(x, M):
 sinv = 0

 # Write your code here!!!

 return sinv

if __name__ == '__main__':
 x = float(input('x:'))
 M = int(input('M:'))

 print('sin(%.2f) = %.5f'%(x, approx_sin(x, M)))

