Problem A: Adaptive

KKU has introduced new traffic lights featuring an adaptive control system, designed to optimize traffic management for increased safety and efficiency.

and and and	U	รูปแบบ	ตำแหน่ง
1		สามแยก	กองป้องกันและรักษาความปลอดภัย
2		สี่แยก	ศาลาพระราชทานปริญญาบัตร (เติม)
3		สี่แยก	หอพักนักศึกษานานาชาติ
7 19		สามแยก	คณะเภสัชศาสตร์
5		สามแยก	คณะสาธารณสุขศาสตร์
6		สามแยก	แฟลตพยาบาล/ศูนย์ DAY CARE
7		สามแยก	หมู่บ้านศูนย์แพทย์ 4
8		สามแยก	ต้นสักสายรหัสฝถนนสาย 4
9		สามแยก	หมู่บ้านศูนย์แพทย์ 6
10		สี่แยก	คณะนิติศาสตร์

Unfortunately, after several months of observation, the system's "adaptive" capabilities have not met expectations. Your task is to write a program to help improve traffic management.

The map of KKU is represented as a **R** x **C** grid. Each cell within this grid corresponds to a traffic light, and each traffic light has its own waiting time. We would like to set the waiting time for each traffic light to satisfy the following conditions:

- The waiting time of each traffic light must be a positive integer.
- The shortest total time required to travel from the top-left cell to the bottom-right cell must be exactly T_A
- The shortest total time required to travel from the top-right cell to the bottom-left cell
 must be exactly T_B

However, it may not always be possible to satisfy all these conditions. Your program must determine for which scenario it is possible to do so.

Input:

The first line of input is an integer T, representing the number of test cases. Each test case consists of a single line containing four numbers: R, C, T_A and T_B.

Output:

For each test case, print "Adaptive" if it is possible to set up the traffic system to satisfy those conditions; otherwise, "No".

Sample Input	Sample Output		
3	Adaptive		
2 2 120 100	Adaptive Adaptive		
3 3 10 11	No		
3 4 2 1			

Explanation:

• Test case #1: it is possible to design the traffic system as follows

40	40
20	60

There are two paths from the top-left cell to the bottom-right cell:

$$(40 \rightarrow 40 \rightarrow 60 = 140)$$
 and $(40 \rightarrow 20 \rightarrow 60 = 120)$

There are two paths from the top-right cell to the bottom-left cell:

$$(40 \rightarrow 40 \rightarrow 20 = 100)$$
 and $(40 \rightarrow 60 \rightarrow 20 = 120)$

• Test case #2: it is possible to design the traffic system as follows

1	3	2
12	1	2
5	1	4

The shortest path from the top-left cell to the bottom-right cell:

$$(1 \rightarrow 3 \rightarrow 1 \rightarrow 1 \rightarrow 4 = \underline{\mathbf{10}})$$

The shortest path from the top-right cell to the bottom-left cell:

$$(2 \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 5 = \underline{\textbf{11}})$$

Constraints:

- 1 <= **T** <= 50
- $1 \le R$, $C \le 100$, $1 \le T_A$, $T_B \le 1,000,000$